Cubical setting for discrete homotopy theory

Daniel Carranza University of Toronto Chris Kapulkin University of Western Ontario

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ontario Combinatorics Workshop University of Waterloo May 14, 2022

Discrete homotopy theory

Discrete homotopy theory is a homotopy theory for graphs

Graphs are simple, undirected, no self-edges

Definition (from topology)

For $f, g: X \to Y$, a homotopy from f to g is $\alpha: X \times [0, 1] \to Y$ s.t.

$$\alpha(x,0) = f(x)$$
 and $\alpha(x,1) = g(x)$

for all $x \in X$.

- We need notions of:
 - 1. graph maps
 - 2. product
 - 3. interval

Graph maps

A graph map $f: G \to H$ is $f: G_V \to H_V$ s.th.

$$v \sim w \implies f(v) \sim f(w) \text{ or } f(v) = f(w).$$

Example

イロト 不得 トイヨト イヨト

3

Cartesian Product

The Cartesian product $G \otimes H$ has • vertices: pairs $(g \in G, h \in H)$ • $(v, w) \sim (v', w')$ if v = v' and $w \sim w'$ or $v \sim v'$ and w = w'

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interval(s)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Discrete homotopies

A homotopy from f to g is α: G ⊗ I_m → H (for some m ≥ 0) s.t. α(v, 0) = f(v) and α(v, m) = g(v) for all v ∈ G.

A homotopy equivalence is f: G → H with g: H → G and homotopies

 $\mathrm{id}_G \sim gf$ and $\mathrm{id}_H \sim fg$.

Not just Hatcher

 $C_3 \rightarrow I_0$ and $C_4 \rightarrow I_0$ are homotopy equivalences.

Discrete homotopy groups

The *n*-th homotopy group of (G, v) is $A_n(G, v) := \{f : I_{\infty}^{\otimes n} \to G \mid f(\vec{n}) = v \text{ for almost all } \vec{n} \in I_{\infty}^{\otimes n}\} / \sim_* .$

Theorem

$$A_1(C_m,0) \cong \begin{cases} 1 & m=3,4\\ \mathbb{Z} & m \ge 5. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Applications

- Social and technological networks ~1974
 Atkin, An algebra for patterns on a complex
- Hyperplane arrangements ~2005
 Babson, Barcelo, Laubenbacher, A-homotopy theory and arrangements of linear subspaces
- Matroids 2015 Chalopin, Chepoi, Osajda, On two conjectures of Maurer concerning basis graphs of matroids
- Topological data analysis
 2019
 Mémoli, Zhou, Persistent Homotopy Groups of Metric Spaces
- Geometric group theory ~2020
 Delabie, Khukhro, Course fundamental groups and box spaces

Cubical setting

For a graph G, construct a CW-complex X_G :

▶ 0-cells: vertices of G i.e. maps $I_0 \rightarrow G$

▶ 1-cells: maps
$$I_1 \to G$$

- ▶ 2-cells: maps $I_1^{\otimes 2} \to G$
- ▶ 3-cells: maps $I_1^{\otimes 3} \to G$

:

÷

• n-cells: maps
$$I_1^{\otimes n} \to G$$

Conjecture (Babson, Barcelo, de Longueville, Laubenbacher)

$$A_n(G, v) \cong \pi_n(X_G, v).$$

Cubical Setting

Use cubical sets, not spaces

Theorem (C, Kapulkin)

- $\blacktriangleright A_n(G, v) \cong \pi_n(X_G, v)$
- Hurewicz theorem
- Long exact sequence of A-homotopy groups

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●